01_pravidla:01_zaklad:04_plosne_objekty_zps
Rozdíly
Zde můžete vidět rozdíly mezi vybranou verzí a aktuální verzí dané stránky.
| Obě strany předchozí revizePředchozí verzeNásledující verze | Předchozí verze | ||
| 01_pravidla:01_zaklad:04_plosne_objekty_zps [2024/04/03 09:38] – Struct data změněna Irena Křeková | 01_pravidla:01_zaklad:04_plosne_objekty_zps [2024/09/30 16:07] (aktuální) – Struct data změněna Irena Křeková | ||
|---|---|---|---|
| Řádek 1: | Řádek 1: | ||
| ====== 1.1.4. Plošné objekty ZPS ====== | ====== 1.1.4. Plošné objekty ZPS ====== | ||
| - | Objekty | + | Odvozené plošné objekty |
| - | Pro každý typ objektu | + | Práce |
| - | Odvozené plošné objekty | + | ==== Základní pravidla pro vytváření odvozených plošných objektů v IS DTM kraje ==== |
| + | |||
| + | Liniové konstrukční objekty tvořící hranice plošných objektů musí být topologicky uzavřené a musí obsahovat uvnitř právě jeden definiční bod. Liniové konstrukční objekty se vedou v plných 3D souřadnicích (X, Y, Z). Odvozené plošné objekty | ||
| + | |||
| + | Pro každý typ objektu | ||
| + | |||
| + | {{ : | ||
| + | |||
| + | //Obrázek č. 1: Uplatnění hierarchie | ||
| + | |||
| + | V případě, že pro tvorbu 3D obvodu jsou vybrány jednoznačné konstrukční prvky, dochází k postupné rekonstrukci 3D obvodu dle průběhu hranice 2D plochy. V případě, že není možné dále pokračovat v tvorbě 3D obvodu může být hlášena chyba: **Neexistuje svislá hrana** (viz obrázek). | ||
| + | |||
| + | {{ :01_pravidla: | ||
| + | |||
| + | //Obrázek č. 2: Ukázka příkladu, kdy pro plochu P2 bude hlášena neexistující svislá hrana// | ||
| + | |||
| + | Dále jsou popsány situace, kdy není jednoznačné, | ||
| + | |||
| + | ==== Dvojí hrany ==== | ||
| + | |||
| + | Ve speciálních případech metodika | ||
| + | |||
| + | **Charakteristika dvojí hrany:** | ||
| + | |||
| + | * Dvojí hrany se vyskytují pouze na objektech | ||
| + | * Konstrukční linie mohou tvořit dvojí hranu pouze v rámci 1 levelu, tj. dvojí hranu nemohou tvořit linie v různých levelech. | ||
| + | * Dvojí hrana se může použít na hraně 2D plochy jako dvě konstrukční linie, které jsou totožné ve 2D, ale mají rozdílný průběh ve 3D. | ||
| + | * Každá ze dvou konstrukčních linií dvojí hrany náleží k právě jednomu 3D obvodu. | ||
| + | * Typ objektu a hodnota atributu každé konstrukční linie dvojí hrany musí odpovídat typu objektu a hodnotě atributu 2D plochy, ke které náleží, uvedené na stejné úrovni (řádku) v hierarchii konstrukčních a odvozovaných objektů. | ||
| + | |||
| + | //Pro další popis jsou zavedeny zkratky L1, P1, L2, P2, které pro každou dvojí hranu znamenají:// | ||
| + | * //P1 – plošný objekt, resp. odpovídající definiční bod uvedený v dokumentu hierarchie konstrukčních prvků a odvozených objektů;// | ||
| + | * //L1 – liniový konstrukční prvek tvořící hranici plochy P1; jedna ze dvou linií dvojí hrany;// | ||
| + | * //P2 – plošný objekt, resp. odpovídající definiční bod uvedený v dokumentu hierarchie konstrukčních prvků a odvozených objektů;// | ||
| + | * //L2 – liniový konstrukční prvek tvořící hranici plochy P2; jedna ze dvou linií dvojí hrany.// | ||
| + | |||
| + | //Číslo linie/ | ||
| + | |||
| + | //Pro obecný popis jednotlivých scénářů jsou použity operátory “=”, “<”, “> | ||
| + | |||
| + | Na následujících příkladech jsou na objektu propustku a příkopu demonstrovány 3 geometrické situace dvojí hrany. V praxi tato situace může nastávat při kombinaci různých objektů (zeď/ | ||
| + | |||
| + | {{ : | ||
| + | |||
| + | // | ||
| + | |||
| + | {{ : | ||
| + | |||
| + | //Obrázek č. 4: Dvojí hrana mezi čelem propustku | ||
| + | |||
| + | {{ : | ||
| + | |||
| + | // | ||
| + | |||
| + | Z pohledu Hierarchie konstrukčních a odvozovaných objektů mohou v datech nastat různé situace založené na úrovni hierarchie konkrétní linie a odvozované 2D plochy/3D obvodu (viz dále). | ||
| + | |||
| + | ==== Validní scénáře pro dvojí hrany ==== | ||
| + | |||
| + | Validní situace jsou ty, kdy při tvorbě 3D obvodů je možné jednoznačně rozhodnout čistě na základě geometrických vztahů nebo pravidel hierarchie, kterou z linií (horní/ | ||
| + | |||
| + | **Scénář č. 1:** P1 = L1 and P2 = L2 and L1 <> L2: Každá plocha má svoji přesně určenou linii. Obě plochy jsou rozdílného typu. | ||
| + | |||
| + | Plochu č. 1 včetně 3D obvodu lze odvodit správně bez ohledu na linii a plochu č. 2, pro plochu č. 2 platí to stejné, pouze naopak. Odvození lze provést pro obě plochy nezávisle na sobě. | ||
| + | |||
| + | {{ :01_pravidla: | ||
| + | |||
| + | //Obrázek č. 6: Uplatnění hierarchie pro dvojí hrany: Příklad - Scénář č. 1 - Plocha/obvod č. 1 je na stejné úrovni hierarchie jako linie č. 1, tzn. je možné jednoznačné přiřazení, | ||
| + | |||
| + | {{ : | ||
| + | |||
| + | //Obrázek č. 7: Dvojí hrana mezi čelem propustku a příkopem, 3D pohled, na základě P1 = L1 and P2 = L2 and L1 <> L2 je možné jednoznačně určit, která linie patří k jaké ploše.// | ||
| + | |||
| + | //P1 – 0100000051 – Příkop, násyp, zářez dopravní stavby (hierarchie = 51), P2 – 0100000193 – Čelo propustku (26), L1 – 0100000304 – Hranice dopravní stavby nebo plochy, typ dopravní stavby nebo plochy = příkop, násyp, zářez dopravní stavby (51), L2 – 0100000300 – Hranice stavby, typ stavby = čelo propustku (26).// | ||
| + | |||
| + | Scénář č. 1 připouští pouze situace, kdy obě linie dvojí hrany jsou v hierarchii konstrukčních prvků a odvozených objektů uvedeny na stejné úrovni/ | ||
| + | |||
| + | V takových situacích nebude v místě dvojí hrany identifikována duplicita mezi konstrukčními liniemi dvojí hrany a třetí nekonstrukční linií. V případě, že nekonstrukčních linií v místě dvojí hrany bude více než 1 jedná se o duplicitu mezi nekonstrukčními liniemi. | ||
| + | |||
| + | ==== Nevalidní scénáře pro dvojí hrany ==== | ||
| + | |||
| + | Nevalidní situace jsou ty, kdy při tvorbě 3D obvodů není možné jednoznačně rozhodnout čistě na základě geometrických vztahů nebo pravidel hierarchie, kterou linii (horní/ | ||
| + | * špatnou klasifikací linií | ||
| + | * nebo použitím linie neodpovídající přímo žádné ploše dle hierarchie | ||
| + | |||
| + | **Scénář č. 2:** P1 (hierarchie) = L1 (hierarchie) and P2 <> L2 and P1 <> P2: Jedna z ploch (P1) má svoji přesně určenou linii (L1). Obě plochy jsou rozdílného typu. | ||
| + | |||
| + | Plochu (P1) se podaří odvodit podle scénáře č.1. Při odvození plochy (P2) není jednoznačně možné určit, kterou linii použít pro tvorbu 3D obvodu. V místě dvojí hrany je hlášena chyba Není možné vygenerovat 3D obvod plochy z důvodu neexistence odpovídajícího konstrukčního prvku pro segment plochy. | ||
| + | |||
| + | **Scénář č. 3:** P1 (hierarchie) = L1 (hierarchie) and P2 = L2 --> P1 = P2: Dvě stejné plochy se stejnými liniemi na hranici na stejné úrovni hierarchie. | ||
| + | |||
| + | Při odvození první i druhé plochy není jednoznačně možné určit, kterou linii použít pro tvorbu 3D obvodu. V místě dvojí hrany je hlášena chyba Není možné vygenerovat 3D obvod plochy z důvodu nejednoznačnosti. | ||
| - | Práce s oblastí kompletní ZPS je popsána v dokumentu [[01_pravidla: | ||
| Další dokument: [[01_pravidla: | Další dokument: [[01_pravidla: | ||
| - | {{tag> | + | {{tag> |
| ---- struct data ---- | ---- struct data ---- | ||
| stav.Stav | stav.Stav | ||
| - | stav.Projednáno | + | stav.Projednáno |
| ---- | ---- | ||
01_pravidla/01_zaklad/04_plosne_objekty_zps.1712137138.txt.gz · Poslední úprava: autor: Irena Křeková
